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Abstract

We propose a new hypothesis test for the di�erential abundance of pro-

teins in mass-spectrometry based relative quanti�cation. An important

feature of this type of high-throughput analyses is that it involves an enzy-

matic digestion of the sample proteins into peptides prior to identi�cation

and quanti�cation. Due to numerous homology sequences, di�erent pro-

teins can lead to peptides with identical amino acid chains, so that their

parent protein is ambiguous. These so-called shared peptides make the

protein-level statistical analysis a challenge and are often not accounted

for. In this article, we use a linear model describing peptide-protein re-

lationships to build a likelihood ratio test of di�erential abundance for

proteins. We show that the likelihood ratio statistic can be computed in

linear time with the number of peptides. We also provide the asymptotic

null distribution of a regularized version of our statistic. Experiments on

both real and simulated datasets show that our procedures outperforms

state-of-the-art methods. The procedures are available via the pepa.test

function of the DAPAR Bioconductor R package.

Keywords: Likelihood ratio test; Di�erential analysis; Discovery pro-

teomics; Shared peptides;

1 Introduction

Quantitative proteomics refers to the identi�cation and quanti�cation of the pro-
teins present in a biological sample. This �eld has rapidly grown mature over the
last decade, allowing for a re�ned understanding of a wide variety of biomolec-
ular processes: phenotypes of new forms of life, such as giant viruses [17], host-
pathogen cell interactions [15] or microbial infections [12]. As many other omics
sciences, it is based on a large scale sequencing approach, that is bound to
high throughput measurements whose statistical processing is a central issue.
The most classically used measurement pipeline [4] is referred to as relative
bottom-up MS/MS quanti�cation [24]. The term bottom-up refers to the fact
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that proteins are not directly identi�ed: instead, they are �rst digested by an
enzyme into smaller molecules called peptides, that are easier to analyze by
MS/MS. The term MS/MS refers to the fact that two kinds of mass spectrome-
try (MS) measurements are alternatively performed. This instrumental pipeline
is particularly useful in discovery proteomics, where the goal is to �nd a short-
list of proteins that are signi�cantly di�erently abundant. Several samples are
collected under di�erent biological conditions (e.g., in healthy vs. disease, wild-
type vs. mutant, etc.) and analyzed with the aforementioned pipeline, leading
to a list of identi�ed peptides and their intensity for each sample. Several meth-
ods have been proposed to detect di�erentially abundant proteins and can be
divided in two main families: peptide-based and aggregation-based methods, also
referred to as summarization-based in [9]. In the latter ones, peptide-level in-
formation is �rst aggregated at the protein level and proteins are then tested
for di�erential abundance using these summaries [20, 19, 5, 6]. They mostly
di�er by the set of peptides that they aggregate and the test statistic they use
after aggregation. Peptide-based models on the other hand do not rely on an
aggregation step and build a test statistic using peptide intensities as a sampling
unit [2, 1, 3, 10]. A more detailed discussion of the literature and preliminary
comparisons among aggregation-based methods are provided in Section A of the
Supplementary Material.

For both families of methods, deciding which proteins are di�erentially abun-
dant from peptide level observations is made di�cult by the presence of shared
peptides (as opposed to protein-speci�c ones): due to the numerous homology
sequences between di�erent genes, some peptides can belong to several distinct
proteins [16]. This problem has long been reported in the literature [13]. It
a�ects all data produced by a bottom-up approach � including label-free as
studied in this paper � as well as isobaric tag data, where similar aggregation
problems were reported [11, 14]. According to [5], up to 50% of peptides can be
shared in the proteome of complex organisms. We illustrate the extent of this
phenomenon and its e�ect on the detection of di�erentially abundant proteins
in Section B of the Supplementary Material, on a proteomic dataset obtained
from the LC-MS/MS analysis of mouse liver samples.

To the best of our knowledge, the few solutions to the shared peptide problem
available in the literature have hardly spread to proteomics platforms, as they
are computationally expensive and do not scale to large proteomics datasets.
[2] for example exploit a model akin to the one we use in this paper but include
a factor representing the peptide-speci�c relationship between the measured
peptide intensity and its actual abundance. This factor causes the negative log-
likelihood to be non-convex in the set of parameters making its minimization
non-trivial and possibly expensive � the authors restrict themselves to peptides
shared by no more than two proteins. No algorithm or code is available for this
method, to the best of our knowledge. More recently [1] have proposed AllP,
which is also based on a similar model as our work but uses a log-normal model.
The use of this distribution corresponds to a common assumption on observed
peptide distribution [18]. Unfortunately, maximizing the corresponding likeli-
hood is more computationally demanding than that of the normal distribution
we use, as no closed form maximizer is available. As reported in its original
article, a synthetic datasets with 100 proteins requires 3 days of computation
and for such a dataset the algorithm does not converge in 18% of the cases.

In this context, our contribution is four fold:
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1. We introduce a linear model which relates measured peptide MS intensities
to latent protein abundances, and use it to build a PEptide based Protein
di�erential Abundance (PEPA) likelihood ratio test which accounts for
shared peptides.

2. Our linear model allows for faster estimation than existing log-linear mod-
els but still involves an nq× (p+ q) design matrix, where n is the number
of samples, q the number of peptides and p the number of proteins. Com-
putation of our statistic can therefore be slow and require a large amount
of memory in practice using naive least square implementations. We show
that our likelihood ratio statistic can be computed in O(nq) nevertheless,
making it compatible with proteomic platform throughput.

3. We empirically observe that regularized estimators of the variance param-
eter lead to more powerful tests. We show that under the null hypothesis
of homogeneity, the regularized log-likelihood ratio statistic is still asymp-
totically χ2 distributed up to some normalization.

4. We provide R code for all our methods in the DAPAR Bioconductor R
package, so they can be routinely used by proteomic practitioners.

2 Methods

We consider a proteomics experiment measuring the intensity of q previously
identi�ed peptides that map onto a set of p known proteins. A biological sample
consists of observed intensities for q peptides. Each peptide in turn can belong
to several among p proteins, and the abundance of a peptide is the sum of
the abundance of all proteins containing this peptide. Formally, if the proteins
have respective abundance values θ1, . . . , θp in a sample, then the abundance
of peptide k in this sample should be

∑p
j=1 xkjθj , where xkj = 1 if peptide k

belongs to protein j, 0 otherwise.

2.1 Model

The observed intensities ỹk from an MS/MS experiment are typically modeled
as samples from a log-normal distribution [2, 18, 1]:

ln ỹk|X, θ, α ∼ N

ln

p∑
j=1

xkjθj + αk, σ
2

 , (1)

where σ2 > 0 is the variance of the distribution, αk is a peptide-speci�c e�ect,
X ∈ {0, 1}q×p is a binary matrix whose elements are the xkj and θ ∈ Rp
and α ∈ Rq are vectors containing the protein abundances and peptide e�ects
respectively.

The parameters of interest for di�erential analysis are the protein abun-
dances θ1, . . . , θp. They are unobserved, and we want to test whether they
change between two experimental conditions of interest. More precisely, we
assume the n = n1 + n2 biological samples are measured under two di�erent
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experimental conditions (n1 under the �rst condition, n2 under the second) and
we want to test

H0 : θ(1) = θ(2) vs. H1 : θ
(1)
j 6= θ

(2)
j , θ

(1)
l = θ

(2)
l ∀l 6= j, (2)

where θ(1) and θ(2) ∈ Rp are protein abundance vectors under the two conditions
and j is the protein being tested for di�erential abundance.

The data we use to test (2) consist of q × n i.i.d. intensity measurements
{ỹik}

i=1,...,n
k=1,...,q. To make the analysis and computation easier, we make the ap-

proximation that:

ln ỹk|X, θ, α, σ2 ∼ N

 p∑
j=1

xkjθj + αk, σ
2

 , (3)

which amounts to replacing ln
∑p
j=1 xkjθj by its �rst order Taylor expansion,

as discussed in Supplementary Material C. Consistently, we observe that the
likelihood ratio statistic relying on (3) leads to good empirical performances
to test H0, even on real data or simulated ones from log-normal distributions.
Computing this statistic only requires solving linear problems, which is typi-
cally much faster than solving the non-linear problem associated with (1). It
also makes the computation amenable to an even faster procedure which we
introduce in Section 2.2. In the rest of this paper, we therefore assume that the
ỹik are sampled from (3) and let yik denote the log intensities ln ỹik.

The maximum likelihood (ML) estimators of β = (θ, α) for observations
{yik}

i=1,...,n
k=1,...,q from (3) under H0 and H1 are obtained by ordinary least square:

β̂k ∈ argminβk
‖y −Xkβk‖2, k = 0, 1. (4)

X0 is a vertical concatenation of n copies of the Rq×p+q (X Iq) matrix where Iq
is the identity matrix in Rq, and X1 is a vertical concatenation of n1 copies of
the Rq×p+q+1 (X−j xj 0 Iq) matrix and n2 copies of the Rq×p+q+1 (X−j 0 xj Iq)
matrix:

X0 =

 X Iq
...

...
X Iq

 ∈ Rnq×p+q, X1 =

 X−j xj 0 Iq
...

...
...

...
X−j 0 xj Iq

 ∈ Rnq×p+q+1.

(5)
X−j is the X matrix without its j-th columns xj . The matrix y ∈ Rnq contains
all {yik}

i=1,...,n
k=1,...,q, i.e., the n1 peptide intensity measurements under the �rst con-

dition, followed by n2 ones under the second. Finally, β0 = (θ, α) ∈ Rp+q and
β1 = (θ−j , θj , θ

′
j , α) ∈ Rp+q+1.

Considering σ as a �xed parameter, the ML estimator of σ2 is

σ̂2
k = (nq)

−1 ‖y −Xkβ̂k‖2, k = 0, 1. (6)

Using an inverse gamma prior σ2 ∼ Inv-Gamma(α, β) for α ≥ 0, the maximum
a posteriori (MAP) estimator of σ2 is

σ̂2
k = (3 + 2α)−1 (nq)

−1 ‖y −Xkβ̂k‖2 + s, k = 0, 1, (7)
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with s = 2β. This estimator is implicitly used in test statistics like SAM [21]. It
amounts to regularizing the variance estimate and can lead to better power than
t-tests to detect di�erential abundance when only few samples are available.
To choose s in practice, we generalize the heuristic of [21]: we compute our
statistic for all proteins across a grid of values of s and retain the one leading to
the smallest coe�cient of variation of the statistic across variance levels. The
motivation of the heuristic is that the amplitude of the regularized statistic
should not be determined by the variance of the residuals.

Individual e�ects such as our peptide e�ect αk are commonly modeled as
random variables and endowed with a prior distribution. In our experiments,
using a �xed or random αk made little di�erence so we opted for the �xed e�ect
model, as it is amenable to fast computation using Proposition 1 (see below).

Finally, in practice X often involves disjoint sets of proteins with no pep-
tide in common. When testing (2) for a protein j, we only use peptides whose
observation a�ects the estimation of θj . Concretely, we identify connected com-
ponents in the bipartite graph whose nodes are peptides and proteins with edges
between each peptide and its parent proteins, and apply our procedure to each
connected component separately. Section D of the Supplementary Material fur-
ther discusses this point and introduces a heuristic procedure which does not
separate connected components.

2.2 Computation of the test statistics

We consider the likelihood ratio statistic for (2) under model (3):

λ(σ̂2
0 , σ̂

2
1) = nq

(
ln σ̂2

0 − ln σ̂2
1

)
, (8)

where σ̂2
0 and σ̂2

1 are obtained by solving either (6) for ML estimation or (7) for
MAP estimation. Both estimators require solving the least square problem in (4)
for k = 0 and k = 1. A naive implementation explicitly storing the nq× (p+ q)
and nq × (p + q + 1) design matrices Xk would be slow and possibly run out
of memory even for small n when dealing with connected components involving
thousands of peptides. In the experiments on simulated data with 50% of shared
peptides presented in Section 4.1, the largest connected component contained
993/1000 proteins and 4981/5000 peptides. Computing the test statistic (8)
under H0 across only 2× 3 samples took 4.8Gb of memory and 23 minutes on a
3Ghz i7 core with an implementation using the lm function of R. Computing the
statistic (8) only requires to know the sum of the squared residuals minβ ‖y −
Xkβ‖2 and not necessarily β̂k ∈ argminβ‖y−Xkβ‖2. An implementation of the
projection matrix X0(X>0 X0)†X>0 y over the span of X0 relying on the singular
value decomposition of (X Iq) took 1.6Gb and 3 minutes. We now show how
this sum of squared residuals can be computed in linear time with the size of y.
On the same simulation, our approach allowed to compute (8) in 0.002 seconds
with only a marginal memory usage.

Proposition 1 Let X0 and X1 be de�ned as in (5) and y ∈ Rnq contain the n
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stacked {yik}
i=1,...,n
k=1,...,q samples, then

min
β
‖y −X0β‖2 = ‖y‖2 − n ‖ȳ‖2 (9)

min
β
‖y −X1β‖2 = ‖y‖2 − n ‖ȳ‖2 − n−1n1n2

(
‖xj‖−1x>j

(
ȳ(1) − ȳ(2)

))2
,

(10)

where ȳ = n−1
∑n
i=1 y

i ∈ Rq is the average across the n samples and ȳ(l) ∈ Rq
is the average across the nl samples under condition l ∈ {1, 2}.

The proof is in Section E of the Supplementary Material. WhenX is a binary

matrix, ‖xj‖−1x>j
(
ȳ(1) − ȳ(2)

)
= q

1
2
j

(
ȳ
(1)
j − ȳ

(2)
j

)
, where ȳ(l)j ∈ R, l = 1, 2 is the

average across samples under condition l of the log-intensities of all peptides
belonging to protein j and qj = ‖xj‖2 is the number of peptides belonging to
protein j. The additional term in σ̂1 can then be interpreted as the squared
di�erence between the average log intensities across peptides between the two
conditions.

An important consequence of Proposition 1 is that the log-likelihood ratio
statistic (8) can be computed in O(nq) by computing averages of subsamples
of y, without storing the Xk matrices or diagonalizing the (X>kXk) matrices.
Using Proposition 1 to compute the likelihood ratio statistic moves the compu-
tational bottleneck to the identi�cation of connected components, as illustrated
in Section 4.1. The heuristic we discuss in Section D of the Supplementary
Material skips this identi�cation step and retains all peptides for each tested
protein.

2.3 Null distribution of λ

By Wilk's theorem [23], we know that λ converges in law to a χ2
1 distribution

as n→∞ and the yik are sampled i.i.d. under H0 (i.e., θ(1) = θ(2)) and when
using maximum likelihood estimators of (θ, α, σ2) from (4) and (6). This result
provides asymptotic levels for our test, as rejecting H0 when λ > χ2

1,α, where
χ2
1,α is the 1− α quantile of the χ2

1 distribution, asymptotically leads to a false
positive rate of α. The asymptotic is in n even though the number of sampling
units is nq, as the size of the parameter α also increases with q.

When using a MAP estimator (7) for σ2, Wilk's theorem does not hold
anymore, and indeed we observed in our experiments that the null distribution
of λ under H0 deviates from the χ2

1 distribution. However, Proposition 2 shows
that multiplying λ by a constant factor is enough to recover a correct asymptotic
level.

Proposition 2 Let β, β′ ∈ Rp, σ ∈ R+, xi ∈ Rp, yi|xi, β, σ2 iid∼ N (x>i β, σ
2), i =

1, . . . , n1, yi|xi, β, σ2 iid∼ N (x>i β
′, σ2), i = n1 + 1, . . . , n = n1 + n2, σ̂

2
0 and σ̂2

1

denote the maximum likelihood estimator of σ2 under H0 : β = β′ and H1 :
βk = β′k∀k 6= j, βj 6= β′j respectively, s ≥ 0 and λ(σ̂2

0 , σ̂
2
1) = n

(
ln σ̂2

1 − ln σ̂2
0

)
. If

β = β′, then
σ2 + s

σ2
λ(σ̂2

0 + s, σ̂2
1 + s)→ χ2

1.
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The proof is in Section F of the Supplementary Material. In practice, σ2 is
unknown but we obtained satisfying test levels on both real and simulated data
by using the maximum likelihood σ̂2 instead.

3 Experimental setting

We use both simulated datasets and datasets resulting from spike-in samples
to evaluate the performance of our test procedure. Simulated datasets allow us
to control key parameters such as the proportion of shared peptides, but the
conclusions we draw only hold for data which behave like the simulations. On the
other hand, because of the di�culties that are inherent to the wet-lab procedures
(see Section G.2 of the Supplementary Material), it is not possible to prepare
real samples with an indisputable ground truth and which contain an important
proportion of shared peptides. As a result, spike-in and simulated datasets
provide complementary views on the performance evaluation. The R codes
for our experiments is available at https://github.com/ThomasBurger/pepa-
validation.

3.1 Simulated datasets

We simulate peptide intensities for each of n1 = n2 = 3 samples under two
biological conditions, for q = 5000 peptides belonging to p = 1000 proteins. We
purposely use a generative model � described in Supplementary Material G.1
� which di�ers from the normal model (3) used in our testing procedure. This
allows us to obtain more realistic data, and to assess the robustness of our
method to deviations from the model.

3.2 Spike-in datasets

The true set of di�erentially expressed proteins is generally not known in real
data, making it di�cult to compare di�erential analysis methods. We resort to
using spike-in samples, for which the true set of di�erentially abundant proteins
is known. We use the two datasets described in [7], and which are available in
the DAPARdata R package [22]. These two datasets contain 6 samples that were
prepared using the equimolar human protein mixture Sigma UPS1, including 48
human proteins. Their di�erential abundance ratios are 2 and 2.5 for the �rst
and second datasets, that are respectively referred to as Exp1_R2_pept and
Exp1_R25_pept. A limitation of this dataset is that it contains few shared pep-
tides contrarily to real human samples. To cope with this issue, we arti�cially
add shared peptides in these two real datasets, by merging pairs of peptides. In
Section 4, we report experiments with respectively 0, 120, 200 and 280 arti�cial
shared peptides. These numbers are to be compared to the total numbers of hu-
man peptides in the datasets that are 211 (respectively 290) in Exp1_R2_pept
(respectively Exp1_R25_pept). More details about the spike-in datasets are
available in Section G.2 of the Supplementary Material.

3.3 Compared methods

We evaluate two versions of PEPA test, both using the likelihood ratio statis-
tic (8): PEPA-ML relies on the ML estimator of the variance (6), and PEPA-
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MAP on the MAP estimator (7) of the variance with an inverse-gamma prior.
Comparing these two procedures provides insights on the respective interests
of the likelihood ratio test itself and the variance regularization. These two
methods are compared to several other reference methods.

The only other peptide-based model that accounts for all shared peptides is
AllP [1], which cannot cope with large scale datasets that we consider in our
experiments so we compare to methods that only account for protein-speci�c
peptides. The �rst one, referred to as PeptideModel, performs a two-sample t-
test for each protein, where each group is formed by pooling all protein-speci�c
peptides across all biological samples in one condition. This corresponds to a
likelihood ratio test using model (3) without its peptide e�ect, and restricted
to protein-speci�c peptides, so the performance increment between Peptide-
Model and PEPA-ML quanti�es the interest of accounting for shared peptide in
the context of this particular model. We also include the latest peptide-based
method MSqRob from [10]. Like PeptideModel, MSqRob relies on a linear model
using the peptides as its sampling unit but introduces a few improvements: �rst,
a ridge penalty on the estimated e�ects; second, an empirical Bayes estimator
of the variance (both of which should help when few unique peptides are avail-
able); and �nally, a robust loss function to deal with outliers. In the absence of
shared peptides, it is therefore similar to PEPA-MAP but uses a di�erent type
of regularization of the variance, an additional regularization of the regression
parameters and a robust loss.

We also consider two aggregation-based models: the �rst one, denoted AllSpec-
SAM, performs the SAM-test proposed by [21] (with automatic tuning of the
fudge factor parameter, as discussed by [8]) over each protein summarized by
the sum of intensities of all of its protein-speci�c peptides. The second one, de-
noted Top3Spec-TT, performs a t-test over each protein summarized by the sum
of intensities of its 3 most abundant protein-speci�c peptides. AllSpec-SAM is
the most accurate aggregation-based model, that is the best combination of ag-
gregation and test, as discussed in Sections A.2 and A.4 of the Supplementary
Material. On the other hand, because of its simplicity, Top3Spec-TT remains
one of the most used methods on proteomics platforms, and it provides baseline
performances.

To compare the performances of the di�erent methods, we construct precision-
recall (PR) curves. In order to stabilize the results, the PR curves are averaged
over 30 runs for simulated data, and 10 runs on the spike-in data when using
the peptide merging procedure.

3.4 Additional assumptions made by PEPA

We evaluate all methods on their ability to test H′0 : θ
(1)
j = θ

(2)
j versus H′1 :

θ
(1)
j 6= θ

(2)
j which do not make assumptions on the di�erential abundance of other

proteins. All competitors are built uponH′0 andH′1. By contrast, PEPA needs
to make assumptions on the di�erential abundance of all proteins in the same
connected component since (i) it exploits shared peptides and (ii) it is based
on a likelihood ratio statistic. The likelihood ratio statistic for each protein
involves other proteins, whose di�erential abundance status is not speci�ed by
H′0 and H′1. A Wald statistic exploiting shared peptides would not have this
issue, but would not be amenable to the acceleration o�ered by Proposition 1.
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Speci�cally PEPA tests H0 versus H1, assuming that no other protein is
di�erentially abundant. Alternatively, we could assume that all other proteins
are di�erentially abundant or that θ(1) − θ(2) is sparse and estimate its support
by using an `0 or `1 constraint. We tried the latter option and obtained a very
moderate improvement when using the true number of di�erentially abundant
proteins, at the cost of a large computational overhead. We therefore rely on
the H0 approximation for PEPA but keep in mind that is is misspeci�ed as long
as other proteins in the connected component are di�erentially abundant, which
could in�ate both type I and type II errors. We show that in our experiments
� where 50 proteins are di�erentially abundant � PEPA is reasonably well cali-
brated and allows for better precision/recall trade-o�s even against competitors
which are not making this approximation. Other choices of hypothesis could be
better suited in cases where a large proportion of proteins are expected to be
di�erentially abundant.

4 Results

In this Section we present PR curves on simulated and spike-in datasets, calibra-
tion curves and a runtime performance comparison of the evaluated methods.

4.1 Performances on simulated datasets

The performances on simulated datasets with 0%, 5%, 20% and 50% of shared
peptides are displayed on Figure 1. Additional �gures representing 1%, 10%,
33% and 67% of shared peptides are provided in Section K of the Supplementary
Material.

Peptide-based dominate aggregation-based methods In all settings, the
baseline method Top3Spec-TT is by far the least accurate. Overall, as
noticed by [9], aggregation-based methods (Top3Spec-TT and AllSpec-
SAM, depicted by lighter or darker green dotted curves respectively) are
less accurate than other methods, whether or not they exploit shared
peptides.

Bene�t of using shared peptides In the absence of shared peptides, both
PeptideModel and MSqRob are very similar to PEPA-ML and PEPA-
MAP, respectively, as discussed in Section 3.3. Accordingly, the upper
left panel of Figure 1 shows that both families perform comparably in this
regime, whether they use shared peptides (PEPA-ML and PEPA-MAP in
lighter or darker solid red curves respectively) or not (PeptideModel and
MSqRob depicted by lighter or darker dashed blue curves respectively).
As shared peptides are introduced, and as their number increases, the
number of protein-speci�c peptides available mechanically decreases, af-
fecting all methods which do not exploit shared peptides. On the other
hand, the performances of our methods accounting for shared peptides are
generally una�ected and clearly dominate all other methods as soon as a
large enough proportion is reached (5 to 20%).

Bene�t of regularization The regularized versions of the compared methods
(darker colors) always dominate their unregularized counterparts (lighter
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colors). This is true regardless of the proportion of shared peptides. As
the number of shared peptides increases, the unregularized versions of
methods which do not exploit these peptides (peptide-based PeptideModel
and aggregation-based Top3Spec-TT) face a more severe dropout of their
performances than the corresponding regularized methods (peptide-based
MSqRob and aggregation-based AllSpec-SAM), suggesting that regular-
ization helps more as fewer protein-speci�c peptides become available. We
observe the opposite behavior for our methods accounting for shared pep-
tides: the bene�t of the regularization introduced in PEPA-MAP versus
PEPA-ML decreases as the proportion of shared peptides increases. In-
deed, as this proportion increases, our likelihood ratio test does not discard
the shared peptides and additionally gains more peptides for each protein.
Accordingly the pink curve of PEPA-ML actually improves as the propor-
tion of shared peptides increases because its sample size also increases and
regularization becomes less useful.

Overall, PEPA-MAP provides the best performances on simulated data, despite
the strong misspeci�cation of the data generating model with respect to the
regression model.

4.2 Performances on spike-in datasets

We build PR curves to compare all methods on Exp1_R2_pept (Figure 2) and
Exp1_R25_pept datasets (Figure 3) with 0, 120, 200 and 280 shared peptides.
Additional �gures representing the cases with 40, 80, 160 and 240 shared pep-
tides are provided in Section K of the Supplementary Material. Exp1_R2_pept
and Exp1_R25_pept originally contain 10722 (resp. 10601) peptides, among
which 211 (resp. 290) come from human proteins, so that the proportion of
shared peptides is rather small: for either datasets, the proportion of intro-
duced shared peptides is smaller than 2.65% (to be compared with a proportion
up to 50% of shared peptides as recalled in the introduction).

We notice a large di�erence of performances and of behavior between the
two datasets. Exp1_R25_pept derives from a series of LC-MS/MS experiments
that did not undergo any malfunction, so that the data is of rather high quality.
On Exp1_R2_pept it is not possible to diagnose the source of the noise which
could range from the MS acquisition to the bioinformatic data processing, yet it
is clear that on this dataset, the UPS1 protein is more di�cult to detect. Both
datasets correspond to a scenario that can be faced on proteomics platforms.

Peptide-based methods do not always dominate aggregation-based methods

The domination of peptide-based over aggregation-based models that was
clearly illustrated on simulated dataset does not hold on our spike-in
datasets. This is especially true on Exp1_R2_pept, where AllSpec-SAM
outperforms all other methods (including ours) when there are no shared
peptides. In the presence of shared peptides, it is either competitive
with or dominated by our method. All other methods (PeptideModel,
Top3Spec-TT and MSqRob) are dominated by AllSpec-SAM, PEPA-ML
and PEPA-MAP regardless of the number of shared peptides. A possible
explanation is that when peptide-level intensity values are unreliable, the
aggregation process somehow regularize the resulting protein-level inten-
sity values. The same conclusions hold on the Exp1_R25_pept dataset,
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yet with dimer magnitude: when the number of shared peptides increases,
MSqRob keeps up but remains dominated by aggregation-based methods.

Bene�t of shared peptides and regularization PEPA-ML and PEPA-MAP
outperform all other methods as soon as enough shared peptides are in-
troduced. In all cases, the regularized methods AllSpec-SAM and PEPA-
MAP outperform their unregularized counterparts Top3Spec-TT and PEPA-
MAP. MSqRob dominates PeptideModel on Exp1_R25_pept, but is out-
performed for small recall values on Exp1_R2_pept, suggesting that on
this dataset MSqRob assigns the lowest p-values to a few non di�erentially
abundant proteins.

Our methods handle proteins with no speci�c peptide In both experi-
ments, some proteins are lost by methods that only rely on protein-speci�c
peptides because as the number of shared peptides increases, these pro-
teins end up with only shared peptides. On Figures 2 and 3, this leads to
the noticeable dropouts on the lower end of the curves for these methods.
This illustrates an important practical issue: methods that only rely on
protein-speci�c peptides are unable to deal with some proteins. Account-
ing for shared peptides like we suggest not only improves our ability to
detect di�erentially abundant proteins among those that are handled by
classical methods, but also increases the proteome coverage.

To conclude, these experiments show that both our method accounting for
shared peptides and its regularized version improve our ability to detect di�er-
entially abundant proteins on proteomics datasets. The more shared peptides,
the more important the increment of performances, but even on datasets with
no shared peptides the methods remain accurate and never strongly underper-
forms. Finally, the regularized version always performs better than the other,
making PEPA-MAP a safe choice.

4.3 p-value calibration

The last point to evaluate is the quality of the calibration of the p-values pro-
vided by our tests. In particular, it is necessary to check that the correction
we introduced in Proposition 2 for our PEPA-MAP statistic leads to correct
asymptotic levels using a χ2 distribution like with the PEPA-ML statistic. To
visually assess this point, we compare the expected and actual test levels for
the methods evaluated in Sections 4.1 and 4.2 except for Top3Spec-TT, to avoid
cluttering our graphs. In addition to PEPA-MAP we include a corrected version
PEPA-MAP-RW. RW stands for reweighted: all the regularized likelihood ratio
statistics are multiplied by σ̂2+s

σ̂2 as suggested by Proposition 2. We compute the
mean square residuals of our model for each protein and average these estimates
across proteins to obtain σ̂2. PEPA-MAP-RW would behave exactly like PEPA-
MAP in the PR curves of Sections 4.1 and 4.2 as multiplying the test statistic
of all proteins by the same weight does not a�ect their order. The p-values for
PEPA-ML, PEPA-MAP and PEPA-MAP-RW are computed by comparing the
corresponding statistics to the quantiles of a χ2

1 distribution.
Figure 4 is a (log-log) plot of the empirical proportion of false positives

obtained as a function of the p-value threshold, i.e., the proportion of non-
di�erentially abundant proteins (y-axis) which are assigned a p-value lower than
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the threshold (x-axis). If a test is correctly calibrated, a proportion α of non-
di�erentially abundant proteins has p-value lower than α for all α ∈ [0, 1] and
its calibration plot is the y = x axis. Additional �gures representing the various
calibration plots we obtained during the experiments are provided in Section K
of the Supplementary Material.

Calibration of PEPA-ML The left panel of Figure 4 shows the plots ob-
tained on simulated data from Section 3.1 with no shared peptide. All
methods except PEPA-MAP are reasonably well calibrated. The small
deviation observed for PEPA-ML can be explained by a combination of
two factors. First, the χ2 distribution of PEPA-ML is an asymptotic re-
sult, and we only have n1 = n2 = 3 observations for each group in this case.
Second, as discussed in Section 3.4, the null hypothesis that we are testing
is θ = θ′, i.e., that no protein is di�erentially abundant. This model is
misspeci�ed as soon as the protein j that we are testing is in the same
connected component as a di�erentially abundant protein j′, i.e. θj′ 6= 0,
even if indeed θj = 0. This may happen in our simulations, as our dataset
contains 50 di�erentially abundant proteins. We observe nonetheless that
using the same simulation setting with 10 samples per group instead of 3
leads to a perfectly calibrated PEPA-ML (not shown), suggesting that the
main issue is the low sample size. The right panel of Figure 4 shows the
plots obtained on the Exp1_R2_pept data. PEPA-ML is more severely
decalibrated, leading to a false positive rate of 7.3% when thresholding at
0.01 when AllSpec-SAM leads to a 1.9% rate, PeptideModel to 0.4% and
MSqRob to 4.3%. The deviation is likely caused by the low sample size,
as the number of di�erentially abundant proteins in the dataset is very
similar to the one used in our simulation � where we recover a correct
calibration by increasing the sample size.

Calibration of PEPA-MAP As predicted by Proposition 2, the PEPA-MAP
statistics are not χ2

1 distributed underH0 which is illustrated by the strong
deviation of the grey curve from the y = x axis � the selected regularization
parameter s is large. Weighting our regularized statistics by the factor
obtained in Proposition 2 leads to a test with similar calibration as our
unregularized PEPA-ML, i.e., whose small deviation from the correct level
can be explained by the low sample size. On the Exp1_R2_pept data the
deviation of PEPA-MAP is milder because the selected s is smaller. It
actually leads to more accurate levels than PEPA-ML (1.4% false positive
rate when thresholding the p-values at 0.01) by partially compensating
the deviation incurred by PEPA-ML (because of small sample size) in
the opposite direction. This is of course artefactual and should not be
considered a good property as there is no guarantee the same phenomenon
will systematically happen on new data. The weighting scheme mostly
corrects the deviation of the levels of PEPA-MAP from those of PEPA-
ML, leading to a 4.4% false positive rate when thresholding the p-values at
0.01. The remaining di�erence is probably caused by the poor quality of
our estimate of σ̂2, and the fact that the data may not be well represented
by i.i.d samples from a distribution with a common variance.

Additional calibration plots with varying number of arti�cially added pep-
tides for Exp1_R2_pept and for Exp1_R25_pept are displayed in Section K
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of the Supplementary Material.

4.4 Runtime evaluation

Table 1 shows the average runtime of all evaluated methods across �ve runs of
the simulation described in Section 3.1. All coe�cients of variation are below
10%. We only show a single result denoted as PEPA for PEPA-ML and PEPA-
MAP as the marginal cost of adding a fudge factor is small. For PEPA, we also
show the average time spent at computing the test statistic. The rest of the
time is used to identify the connected component of the peptide-protein graph,
and is una�ected by the speedup obtained in Proposition 1. We do not show
the execution time of PEPA without the speedup but each experiment takes
more than ten hours.

Most methods which do not use shared peptides have a runtime close to
one second: computing their statistic only involves simple operations such as
averages over small numbers of observations. MSqRob however is two orders of
magnitude slower as it involves more observations and an iterated reweighted
least square procedure, but it remains fast enough to be applicable to proteomics
datasets with hundreds of proteins and thousands of peptides. Our methods run
in one minute, most of which is spent computing the connected components of
the peptide-protein graph. The computation of our test statistic using Propo-
sition 1 takes less than 10 seconds, even though it requires the residuals of a
linear regression problem with an nq × (p+ q) design matrix.

5 Discussion and conclusions

We have proposed a linear model that accounts for shared peptides in relative
quanti�cation proteomic experiments based on mass-spectrometry analysis of
peptides. This model can be used to build likelihood ratio tests relying either on
the maximum likelihood or MAP estimator of its variance parameter. We have
also introduced a faster way to compute the test statistic, making it amenable
to datasets with thousands of peptides and proteins. The faster form relies on
the fact that the likelihood ratio statistics only requires the regression residuals
as opposed to estimates of the regression parameters, in particular of protein
abundances. Using our model to estimate abundances � a task which is out
of the scope of this paper and which we did not include in our experiments �
would require to actually estimate the regression parameters, e.g. using explicit
formulas for (X>kXk)†X>k y.

Experiments on simulated and spike-in data con�rm that the proposed tests
have a clear advantage against existing methods to detect di�erentially abun-
dant peptides in the presence of shared peptides. In the absence of shared
peptides or when very few of them are present, our tests behave like existing
methods, suggesting they can be safely used in all cases. We have also shown
that asymptotic levels could be obtained when using the MAP estimator instead
of the maximum likelihood, providing asymptotic levels for this version of our
likelihood ratio test � which systematically outperforms the maximum likeli-
hood version in our experiments. Our tests are implemented in the pepa.test
function of the Bioconductor package DAPAR.
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Our work could be extended in several ways. First the experimental design
of some proteomic analyses may be more complex than the one accounted for
in our evaluations. The fast version of our statistic introduced in Proposition 1
is derived for a model with a protein and peptide �xed e�ect only, as opposed
to e.g. technical replicates. Proposition 1 could be generalized to more group-
ing factors with �xed e�ects. Alternatively, or for random e�ects, one can use
model (3) with additional factors and (slower) out of the box implementations
of mixed model to compute the likelihood ratio statistic. Another possible ex-
tension regards the misspeci�cation described in Section 4.3: using a Wald test
instead of likelihood ratio test, one could simply estimate all protein abundances
jointly instead of relying on models in which all proteins but one are di�eren-
tially abundant. Wald tests however would not bene�t from the acceleration
allowed by Proposition 1 as they require parameter estimates as opposed to just
likelihoods.

Supplementary Materials

The reader is referred to the Supplementary Materials for additional compar-
isons between methods, a more detailed description of existing methods, addi-
tional experiments and plots, a discussion of our linear approximation of the
log-normal model, a fast heuristic for our testing procedure, proofs of Proposi-
tions 1 and 2, as well as a description of our simulation protocol.
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Shared peptides Top3Spec-TT AllSpec-SAM PEPA (test) MSqRob PeptideModel
0 1.67 0.44 56.84 (1.85) 403.36 0.63
0.05 1.55 0.49 60.16 (1.76) 494.20 0.61
0.2 1.43 0.55 64.77 (5.61) 660.61 0.57
0.5 1.13 0.49 67.74 (5.93) 992.35 0.50

Table 1: Average execution time in seconds across �ve runs for the evaluated
methods on simulated data with 0%, 5%, 20% and 50% of shared peptide.

17



0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

PEPA−MAP
PEPA−ML
MSqRob
PeptideModel
AllSpec−SAM
Top3Spec−TT

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

PEPA−MAP
PEPA−ML
MSqRob
PeptideModel
AllSpec−SAM
Top3Spec−TT

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

PEPA−MAP
PEPA−ML
MSqRob
PeptideModel
AllSpec−SAM
Top3Spec−TT

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on

PEPA−MAP
PEPA−ML
MSqRob
PeptideModel
AllSpec−SAM
Top3Spec−TT

Figure 1: PR curve on simulated data with 0% (upper left), 5% (upper right),
20% (lower left) and 50% (lower right) of shared peptides.
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Figure 2: PR curve on Exp1_R2_pept data with 0 (upper left), 120 (upper
right), 200 (lower left) and 280 (lower right) arti�cially added shared peptides.
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Figure 3: PR curve on Exp1_R25_pept data with 0 (upper left), 120 (upper
right), 200 (lower left) and 280 (lower right) arti�cially added shared peptides.
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Figure 4: Calibration plots on simulated (left) and Exp1_R2_pept (right) data
for all compared testing procedures.
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