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Abstract: Selecting proteins with significant differential abundance is the cornerstone of many relative 

quantitative proteomics experiments. To do so, a trade-off between p-value thresholding and fold-

change thresholding can be performed thanks to a specific parameter, named fudge factor, and 

classically noted 𝑠0. We have observed that this fudge factor is routinely turned away from its original 

(and statistically valid) use, leading to important distortion in the distribution of p-values, jeopardizing 

the protein differential analysis; as well as the subsequent biological conclusion. In this article, we 

provide a comprehensive viewpoint on this issue, as well as some guidelines to circumvent it. 
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In quantitative discovery proteomics, once peptides have been identified, their quantitation signal 
extracted and processed (logarithmic transformation, filtering, normalization, missing value imputation, 
protein aggregation [1][2]), differential analysis can be conducted. Basically, it amounts to perform null 
hypothesis significance testing on each protein so as to decide if it is differentially abundant (or not) 
between the compared conditions, depending on a user-defined threshold (a specific p-value or an 
expected false discovery rate [3]). 
 
During this procedure, it is also common to filter all the proteins which fold-change (FC) is too small 
between the two conditions to compare; as small FCs are more likely to badly generalize to different 
biological samples, and then are unlikely to be validated by post-proteomics experiments; or as they are 
usually thought not to be biologically significant. As such, it is very common to apply the following 
procedure: (1) Proteins are represented on a volcano-plot, that is a scatterplot with FCs on the X-axis, 
and scores related to the differential analysis (generally –log10(p) where p is the p-value from the 
statistical test) on the Y-axis; (2) “Vertical” thresholds are applied on the graph, to filter out too small 
FCs; (3)  “Horizontal” threshold is applied to select small p-values (see for instance Fig. 1a). A derivation 
of this procedure is to merge these two thresholds into smooth curves (such as illustrated on Fig. 1c). 
The resulting volcano-plot is much nicer to look at, and it intuitively reduces boundary effects, as the 
sharp corners of the regions with proteins of interest are soften. This is why it has rapidly widespread in 
the proteomics community ([4][5][6] are examples of works that explicitly rely on it, a far greater 
number could be cited). As explained in the protocol of [7], this smooth thresholding is concretely 
implemented by some 𝑠0 parameter that, according to [6] is inherited from the SAM-test. The SAM-test 

mailto:*thomas.burger@cea.fr


is a variation of the classical t-test where this additional 𝑠0 parameter is named fudge factor [8]. The 
authors of [7] rightfully pinpoints the fact that different tuning of 𝑠0 leads to different tuning of the 
thresholding curve. 
 
In this article, we show this procedure may lead to biased differential analysis and to unsupported 

biological conclusions if 𝑠0 is not rigorously tuned. First, we go back to the origin of SAM-test, and 

provide explanation on the origin of the fudge factor. Second, we explain why it was tempting to turn it 

away from its original use and to adapt it to filter out proteins with too low FC. Then, we illustrate its 

misuse on real biological data. Finally, we go back to the original procedure, that is the double p-value 

and FC thresholding, and we explain why it is the correct way to perform differential analysis. 

Some explanations on the fudge factor: Basically, the goal of any Student-like t-test is to weight the FC 
by the inverse of the standard deviation (noted 𝜎) of the abundances in each condition. For any 
protein 𝑖, its statistics reads: 

 𝑡𝑖 = (𝜇𝑖
𝐴 − 𝜇𝑖

𝐵)
1

𝜎𝑖
= 
𝐹𝐶𝑖
𝜎𝑖
  

with 𝐹𝐶𝑖 = 𝜇𝑖
𝐴 − 𝜇𝑖

𝐵  where 𝜇𝑖
𝐴  and 𝜇𝑖

𝐵  are the averages of log-transformed intensities in compared 
conditions 𝐴 and 𝐵. However, in practice, 𝜎𝑖 is unknown, and only its estimate, noted 𝑠𝑖, can be used: 

�̂�𝑖 =
𝐹𝐶𝑖
𝑠𝑖

 

In case of too few replicates, the t-test exhibits a major weakness: The difference between 𝜎 and 𝑠, even 
if rather small, may be too important to provide accurate p-values. To illustrate this, let us assume that 
there is such a small difference, noted 𝛿𝑠𝑖: 

𝜎𝑖 = 𝑠𝑖 + 𝛿𝑠𝑖 
Let us investigate the consequences of this small difference on the quality of the t-statistics: If in the 
above definition, 𝜎 were involved in the numerator, then, the t-statistics would be underestimated by a 
factor of 1 − 𝛿𝑠𝑖, (or overestimated, if 𝛿𝑠𝑖 < 0). As 𝛿𝑠𝑖 is small, it would not be an issue. Unfortunately, 
𝜎𝑖 is involved in the denominator, so that the ratio of the real and estimated statistics reads: 
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= 1 +
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Finally, in real life, the small imprecision of the estimated standard deviation leads to an overestimation 
of the t-statistics by a factor of 1 + 𝛿𝑠𝑖 𝑠𝑖⁄ . Naturally, if the proteomics experiment is poorly 
reproducible, so that the empirical variance on the measured abundance for protein 𝑖 is high, 𝛿𝑠𝑖 is 
much smaller than 𝑠𝑖, so that 1 + 𝛿𝑠𝑖 𝑠𝑖⁄  is close to 1, and the approximation is hardly an issue. However, 
in case of a proteomic experiment of high quality, where the quantification is very reproducible across 
the replicates, 𝑠𝑖 is likely to be small, and possibly, smaller than 1. In such a case, 1 + 𝛿𝑠𝑖 𝑠𝑖⁄  may 
significantly deviate from 1, leading to strong t-statistics overestimation. In the worst case (if the 
measurements are perfectly reproducible, or if by chances, the abundance measurements coincide) the 
empirical variance is nil, so that 𝛿𝑠𝑖 𝑠𝑖⁄  is infinite, leading to dubious infinite t-statistics. 

To summarize, if the abundances measured in the different replicates of a proteomic experiment are 
rather reproducible, it is possible to have a fair estimate of the variance, i.e. 𝜎𝑖 ≈ 𝑠𝑖, while, on the 
contrary,  

1

𝜎𝑖 
≠
1

𝑠𝑖
 

In the end, this may lead to estimated t-statistics that strongly differ from the real one.  This issue is well-
known in numerical analysis, as it occurs whenever one divides by a small quantity which is fit with some 



imprecision. This is why numerous computational tricks are used to face it. The most popular one is 
named Tikhonov regularization [9]; it is based on adding a small constant before computing the 
inversion.  
 
To provide a solution to the instability of the t-test in omics sciences, where classically, standard-
deviations are weakly estimated because of a small number of replicates, it has been proposed to apply a 
regularization trick: The authors of the SAM-test proposed to add a small constant 𝑠0  to the estimated 
standard deviation.  The idea is that, whatever the imprecision 𝛿𝑠 of the standard deviation estimate, it 
will be accounted for, as long as one has 𝛿𝑠𝑖 ≤ 𝑠0. In the worst case where for a specific protein 𝑖, all the 
measurements coincide, dubiously leading to 𝑠𝑖 = 0, the t-statistics reads: 

�̃�𝑖 =
𝐹𝐶𝑖
𝑠𝑖 + 𝑠0

=
𝐹𝐶𝑖
𝑠0

 

and does not reach an infinite value, as precisely justified in [8]. Beside the mathematical trick, let us 
note that 𝑠0 has a nice practical interpretation: Whatever the measurements, the standard deviation 
cannot be considered smaller than 𝑠0; thus, 𝑠0 can be interpreted as an estimation of the volatility of the 
measurement. 
 
Naturally, statisticians are well aware that tuning a parameter related to numerical stability may be 
difficult to practitioners. This is why, several works have thoroughly investigated the issue [10][11]. In 
addition, the authors of the SAM-test provided some guidelines, which have been translated into an 
automatic tuning procedure, available together with in the SAM-test R package (siggenes, function 
fudge2(), [12]). Let us remark that according to these guidelines, 𝑠0 should stick to small values, and 

should be tuned only according to the very content of the dataset, regardless of any other “external” 
information. As a result, in the original publication, one has 𝑠0 = 3.3 for a dataset where the mean 
intensities range between 0 and 25,000. However, on a proteomic dataset with log-transformed 
intensities, such as for instance those reported in [13], fudge2() advised 𝑠0≈0.02. This is significantly 

smaller than other values reported in proteomics literature (see for instance [4][5][6][14][15][16] where 
𝑠0 ranges between 0.4 and 4). 
 
Consequences of deviating from the recommendations of [8]: Let us explore the results of tuning 𝑠0 to 
an important value with respect to 𝑠, regardless of fudge2(). To make it more understandable, let us 

consider the extreme case, where 𝑠0 would be so great that, in proportion, 𝜎𝑖 is immaterial, whatever 
the protein 𝑖: 

𝑠𝑖 + 𝑠0
𝑠0

≈
𝜎𝑖 + 𝑠0
𝑠0

≈ 1 

As 𝑠0 is the same for all the proteins of the dataset, the t-statistics reads: 

�̃�𝑖 =
𝐹𝐶𝑖
𝑠𝑖 + 𝑠0

≈
𝐹𝐶𝑖
𝑠0

 

for each protein 𝑖, and not only the few ones which by chance have a null empirical variance, such as 
described above. Thus, this new t-statistics provides the same ranking amongst the proteins that the FC; 
or more formally, ∀ couple of proteins (𝑖, 𝑗), �̂�𝑖 ≥ �̂�𝑗 ⇔ 𝐹𝐶𝑖 ≥ 𝐹𝐶𝑗. Finally, in this extreme situation, the 

p-value cut-off would be the same as if one uses the FC; rather than the t-statistics or the correctly tuned 
SAM-statistics. In other words, it is possible to make the t-statistics looks like the FC by tuning 𝑠0 to some 
extremely great value with respect to 𝑠. Consequently, the use of 𝑠0 has shifted from that of a 
mathematical tricks (Tikhonov regularization) the tuning of which could be related to the physics of the 
measurement process; to a parameter loosely tuned to account for a filtering on the FC. 
 



Clearly, this is an extreme scenario. However, if 𝑠0 is tuned with an in-between value, the behavior will 
be a mix between a regularizer accounting for the measurement variability, and a FC cutoff. This 
intuitively leads to the expected “smooth thresholds”. However, and contrarily to what is suggested in 
[6], such use of the fudge factor is not supported by the original publication, so that the resulting p-value 
modifications are unsupported. On the contrary, it can be derived from [17], that an arbitrary tuning of 
𝑠0 can lead to spurious distortions of the values of the t-statistics, which provides solid arguments 
against an unsupported tuning. 
 
Let us illustrate this on real data: We consider the dataset named LFQRatio2 that can be found on the 
ProteomeXchange repository with the identifier PXD002370 (see suppl. material) and that accompanies 
the R package “cp4p” [13]. It is a series of six samples containing the same yeast lysate background in 
which the Sigma UPS1 equimolar mixture was spiked in, with different concentrations: Samples 4 to 6 
received 2 times more UPS1 proteins than samples 1 to 3. On such a controlled dataset, all and only the 
UPS1 proteins are supposed to be differentially abundant. On its basis, it is possible to construct a 
volcano-plot, where the p-values are given by the Student t-test. The R code to download the dataset 
and display the volcano-plot is given in supplemental material. The horizontal and vertical thresholds are 
straightforward to draw, leading to the display of Fig. 1a. 
 
Regarding the smooth curve threshold, things are more complicated. First, let us pinpoint that even if 
one uses the SAM-test, the Student p-values are still used, so that the volcano-plot does not change. 
However, one computes the SAM-test p-values and threshold them to discriminate differentially and 
non-differentially abundant proteins (this is equivalent to the horizontal threshold of Fig. 1a). Thus, the 
smooth curve only pictures this SAM-test-induced discrimination in the t-test/FC representation. 
Concretely, it can be demonstrated (see suppl. material) that if one tunes a confidence level 1 − 𝑎, then, 
the equation of the curves reads: 
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{
 
 
 
 

 
 
 
 

− log10

(

 
 
2 ×

[
 
 
 
 

1 − 𝐹𝑆𝑡𝑑

(

 
 
𝑡𝑎 × (1 +

𝑠0
𝐹𝐶
𝑡𝑎
− 𝑠0

)

)

 
 

]
 
 
 
 

)

 
 
          ∀𝐹𝐶 > 𝑡𝑎𝑠0

− log10

(

 
 
2 ×

[
 
 
 
 

1 − 𝐹𝑆𝑡𝑑

(

 
 
𝑡𝑎 × (1 +

𝑠0
𝐹𝐶
−𝑡𝑎

− 𝑠0

)

)

 
 

]
 
 
 
 

)

 
 
          ∀𝐹𝐶 < −𝑡𝑎𝑠0

 

where 𝐹𝑆𝑡𝑑 is the Student distribution function, and where 𝑡𝑎 relates to 𝑎: 

𝑎 = 𝐏(
|𝐹𝐶|

σ + s0
≥ 𝑡𝑎|𝐻0) 

(𝐻0 denotes the probability is computed for non-differentially abundant proteins); 

The purpose is now to tune 𝑓 to perform sensible thresholding. According to [6], 𝑠0 “sets a threshold for 

minimum fold change”, so that if one wants to mimic the thresholding of Fig. 1a, 𝑠0 should be set to 0.5. 

Similarly, the thresholding on the p-values should simply relate to the confidence level 1 − 𝑎, so that it 

makes sense to tune it to 97.5%. The result is displayed on Fig. 1b. Surprisingly, it does not look as 

expected: In fact, contrarily to what is classically assumed, the FC cut-offs do not relate to ±𝑠0, but to  

±𝑡𝑎𝑠0 which are asymptotes for 𝑓. In a similar way, 𝑡𝑎 is directly involved in the horizontal asymptote of 

𝑓. This is really an issue as the practitioner cannot easily estimate 𝑡𝑎: this value relates to the SAM-

statistics, while on the contrary, the user’s confidence level relates to the t-statistics. Consequently, by 



replacing the classical horizontal and vertical thresholds by smooth curves, the practitioner has replaced 

easy-to-interpret parameters by abstruse ones. 

  
(a)       (b) 

  
(c)       (d) 

Figure 1: The volcano-plot of dataset LFQRatio2 (red crosses depict UPS1 proteins); (a) horizontal (p<2.5) and vertical 
(|FC|>0.5) thresholds; (b) smooth curve threshold, with 𝒔𝟎=0.5 and 𝒂=97.5%; (c) various parameter tuning are tried to mimic 
the selection of Fig. 1a: one ends up with 𝒔𝟎=0.15 and 𝒂=97%; (d) the automatic tuning according to [8]. 

Nonetheless, it is possible to perform iterative random guesses to converge toward some values of  𝑡𝑎 

and 𝑠0 that correspond to our expectations, as illustrated on Fig. 1c. However, to achieve so, one has 

modified the SAM-test tuning and the corresponding p-values, which are not displayed on the volcano-

plot (recall that the p-values of the Y-axis are those of a classical t-test). As already mentioned, this 



distortion has no statistical justification and can lead to spurious biological conclusions. For comparisons, 

Fig. 1d displays the same curves, yet, with the automatic tuning advised by [8]; which is not expected to 

filter proteins on their FC. 

Discussion: Although some proteomics studies were precursor in the use of statistical tools to analyze 
expression patterns [18][19], numerous proteomics studies still only rely on FC to claim that a protein is 
differentially abundant between compared conditions [20]. When statisticians are involved in proteomic 
studies, they naturally claim that FC alone is not a meaningful criterion to select differentially abundant 
proteins. However, selecting them only on p-values is not sufficient since it can lead to numerous false 
positives (proteins with very low FC that are unlikely to be biological relevant, or that appear as 
differentially abundant by chance, due to very low fluctuations between the replicates). This 
confrontation between the proteomists’ needs and the statistical guidelines has led to the use of double 
thresholding. Basically, if statistical test and FC thresholding are not sufficient on their own, it is mainly 
because they rely on complementary viewpoints: On one hand, the vertical threshold on the FC 
corresponds to a practitioner’s choice. Depending on the aim of the study, his/her knowledge of the 
protein abundance across various biological samples, etc., he/she may decide to be more or less 
stringent, and to focus on proteins with a great enough FC. These are proteomist’s motivations that 
cannot be judged through the eye of statistics. On the other hand, the horizontal threshold on the p-
value is tuned according to statistical guidelines: If the false discoveries are likely to be too numerous, 
the threshold should be increased, and if a greater number of false discoveries remains acceptable from 
a statistical viewpoint, one may decrease it. Finally, it is very important to understand that despite their 
similarities, these thresholds correspond to different expertise (respectively, proteomics and statistics), 
so that, they should not be mixed, swapped or confused, as they tend to be with a smooth curved 
threshold.  
 
Under this light, the wrong tuning of 𝑠0 to a too large value appears as a way to make FC thresholding 

looks like a statistical test (as it provides p-values), while practically circumventing the statistical 

guidelines (that requires to account for the variance of the protein abundances through the test). 

Concretely, its interest is to provide very tunable parametric curves to allow the user to precisely select 

the proteins he/she wants; and to derive p-values thanks to an artificial relationship between these 

curves and the SAM-test. As the method makes it possible to select exactly the “good proteins” (here the 

UPS1 ones), one supposes the procedure is statistically valid. However, only the correctness of the p-

values is at stake, not the quality of the protein selection: Otherwise, it would be easier to propose the 

practitioner to draw a line surrounding the proteins of interest, and to randomly generate p-values. 

Although clearly dubious, it would not be arguably worse than applying unbounded distortions to real p-

values, as with SAM-test misuse. In addition, such disguise of FC thresholding into statistical test gives 

the insidious impression that the filtering on the FC should have a statistical basis, for the practitioner’s 

expertise is too subjective to rely on. On the contrary, this is typically one of the subjects that are beyond 

statisticians’ expertise, and for which it may be dangerous to rely on theirs, rather than on the 

proteomics experts’ one. 

So, what to do instead? Finally, as practical guidelines, we advise to go back to the original use of 
volcano-plot, with independent vertical/horizontal thresholds corresponding to these complementary 
views. The vertical thresholds should be performed first, on the exclusive basis of the proteomist’s 
expertise: the aim is only to filter out proteins with FC that is so small that they cannot be considered as 
biologically/analytically relevant, regardless a possible excellent p-value. In other words, one should not 



define the FC cutoff to the highest possible value, so as to discard as many proteins as possible (this is 
the concern of the next coming “horizontal threshold”); but on the contrary, to the minimum value 
below which it is not even necessary for the biologist to have a deeper look. Afterward, the statistical 
thresholding can be performed. To do so, one defines a maximum authorized p-value, generally, on the 
basis of the expected false discovery rate associated to the set of proteins considered as differentially 
abundant.  
 
At this point, it is important to note that the p-values for the volcano-plot can have previously been 
computed with any statistical test that is used according to its published uses, as depicted by its original 
authors. In this article, we certainly do not claim “SAM-test is bad”; it can be efficiently used, or not, 
depending on its tuning. Notably, in the case of automatic tuning (according to [8] recommendations) 
the practical advantages of the regularization largely counterbalance the minor distortions of the p-
values. Moreover, beside SAM method, other options are possible, such as for instance, the empirical 
Bayesian approach of Limma [21][22]. Interestingly, thanks to the function treat()available in the 

corresponding R package, it is possible to incorporate a user-defined FC threshold in the null hypothesis 
definition , so as to account for it in a statistically valid way (see [23]).  
 
Of course, it is possible to wonder on the best statistical test among all those available in the literature, 
and to compare them. However, it was not our goal here, as we only wanted to pinpoint that (1) any 
good test can lead to poor results if inadequately used; (2) statistical tests, whatever their quality, cannot 
provide a justification to some of the proteomists’ choices, that mainly rely on their expertise, such as for 
instance, the FC cut-offs. 

Acknowledgements 
This work was funded through the French National Agency for Research grants ANR-10-INBS-08 (ProFI 
project, “Infrastructures Nationales en Biologie et Santé”; “Investissements d'Avenir”call) and ANR-13-
BSV2-0012 (RNAGermSilence project).  

References 
[1] Lazar, C., Gatto, L., Ferro, M., Bruley, C., & Burger, T. (2016). Accounting for the Multiple Natures 

of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation 
Strategies. Journal of proteome research,15(4), 1116-1125. 

[2] S. Wieczorek, F. Combes, C. Lazar, Q. Giai-Gianetto, L. Gatto, A. Dorffer, A.-M. Hesse, Y. Coute, M. 
Ferro, C. Bruley, T. Burger.  “DAPAR & ProStaR: software to perform statistical analyses in 
quantitative discovery proteomics”, under review, 2016. 
https://www.bioconductor.org/packages/3.3/bioc/html/Prostar.html 

[3] Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 
289-300. 

[4] Andlauer TFM, Scholz-Kornehl S, Tian R, et al. Drep-2 is a novel synaptic protein important for 
learning and memory. Griffith LC, ed. eLife. 2014;3:e03895. doi:10.7554/eLife.03895.  

[5] Hubner NC, Bird AW, Cox J, et al. Quantitative proteomics combined with BAC TransgeneOmics 
reveals in vivo protein interactions. The Journal of Cell Biology. 2010; 189(4):739-754. 
doi:10.1083/jcb.200911091. 

https://www.bioconductor.org/packages/3.3/bioc/html/Prostar.html


[6] Hornburg D, Drepper C, Butter F, Meissner F, Sendtner M, Mann M. Deep Proteomic Evaluation of 
Primary and Cell Line Motoneuron Disease Models Delineates Major Differences in Neuronal 
Characteristics. Molecular & Cellular Proteomics : MCP. 2014;13(12):3410-3420. 
doi:10.1074/mcp.M113.037291. 

[7] Cezary Smaczniak, Na Li, Sjef Boeren, Twan America, Walter van Dongen, Soenita S Goerdayal, 
Sacco de Vries, Gerco C Angenent, Kerstin Kaufmann. Proteomics-based identification of low-
abundance signaling and regulatory protein complexes in native plant tissues, Nature protocols, 
2012. 

[8] Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing 
radiation response. Proceedings of the National Academy of Sciences of the United States of 
America. 2001;98(9):5116-5121. doi:10.1073/pnas.091062498. 

[9] Tikhonov AN. On the stability of inverse problems, Dokl. Akad. Nauk SSSR, 39, No. 5, 195-198, 
1943. 

[10] Wu B. Differential gene expression detection using penalized linear regression models: the 
improved SAM statistics. Bioinformatics, 21(8), 1565-1571. 2005 

[11] Efron B, Tibshirani R, Storey JD, & Tusher V. Empirical Bayes analysis of a microarray 
experiment. Journal of the American statistical association, 96(456), 1151-1160. 2001. 

[12] Schwender H. siggenes: Multiple testing using SAM and Efron's empirical Bayes approaches. R 
package version 1.44.0. 2012 

[13] Giai Gianetto Q, Combes F, Ramus C, Bruley C, Couté Y and Burger T. Calibration plot for 
proteomics: A graphical tool to visually check the assumptions underlying FDR control in 
quantitative experiments. Proteomics, 16: 29–32. 2016; doi:10.1002/pmic.201500189 

[14] Lundby A, Andersen MN, Steffensen AB, Horn H, Kelstrup CD, Francavilla C, ... and Olsen JV. In vivo 
phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci. 
Signal.,6(278), rs11-rs11. 2013. 

[15] Geiger T, Wehner A, Schaab C, Cox J, Mann M. Comparative Proteomic Analysis of Eleven Common 
Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular 
Proteomics : MCP. 2012;11(3):M111.014050. doi:10.1074/mcp.M111.014050. 

[16] Smits AH, Jansen PWTC, Poser I, Hyman AA, Vermeulen M. Stoichiometry of chromatin-associated 
protein complexes revealed by label-free quantitative mass spectrometry-based 
proteomics. Nucleic Acids Research. 2013;41(1):e28. doi:10.1093/nar/gks941. 

[17] Lin, D., Shkedy, Z., Burzykowski, T., Ion, R., Göhlmann, H. W. H., Bondt, A. D., ... & Bijnens, L. 
(2008). An Investigation on Performance of Significance Analysis of Microarray (SAM) for the 
Comparisons of Several Treatments with one Control in the Presence of Small‐variance 
Genes. Biometrical Journal,50(5), 801-823. 

[18] Tarroux, P. (1983). Analysis of protein patterns during differentiation using 2‐D electrophoresis 
and computer multidimensional classification. Electrophoresis,4(1), 63-70.  

[19] Anderson, N. L., Hofmann, J. P., Gemmell, A., & Taylor, J. (1984). Global approaches to quantitative 
analysis of gene-expression patterns observed by use of two-dimensional gel 
electrophoresis. Clinical chemistry, 30(12), 2031-2036.  

https://scholar.google.fr/scholar?oi=bibs&cluster=3049263233530312747&btnI=1&hl=fr
https://scholar.google.fr/scholar?oi=bibs&cluster=3049263233530312747&btnI=1&hl=fr


[20] Ting, L., Cowley, M. J., Hoon, S. L., Guilhaus, M., Raftery, M. J., & Cavicchioli, R. (2009). 
Normalization and statistical analysis of quantitative proteomics data generated by metabolic 
labeling. Molecular & Cellular Proteomics, 8(10), 2227-2242. 

[21] Smyth G K. Limma: linear models for microarray data. In Bioinformatics and computational biology 
solutions using R and Bioconductor (pp. 397-420). Springer New York. 2005. 

[22] Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Research. 2015;43(7):e47. 
doi:10.1093/nar/gkv007. 

[23] McCarthy DJ, Smyth GK. Testing significance relative to a fold-change threshold is a 
TREAT. Bioinformatics. 2009;25(6):765-771. doi:10.1093/bioinformatics/btp053. 


